Intermediatry steps in Acetobacter xylinum cellulose synthesis: studies with whole cells and cell-free preparations of the wild type and a celluloseless mutant.

نویسندگان

  • M Swissa
  • Y Aloni
  • H Weinhouse
  • M Benizman
چکیده

Intermediatry steps in cellulose synthesis in Acetobacter xylinum were studied with resting cells and particulate-membranous preparations of the wild-type strain and of a celluloseless mutant. Exogenously supplied [1-14C]glucose was rapidly converted by resting cells of both types into glucose 6-phosphate, glucose 1-phosphate, and uridine glucose 5'-diphosphate (UDP)-glucose and incorporated into lipid-, water-, and alkali-soluble cellular fractions. The decrease in the level of labeled hexose-phosphates and UDP-glucose upon depletion of the exogenous substrate was accounted for by a continuous incorporation of [14C]glucose into cellulose in the wild type and into the above-mentioned cellular components in the mutant. [14C]glucose retained in the alkali- and water-soluble fractions of pulse-labeled wild-type cells was quantitatively chased into cellulose. Sonic extracts of both strains catalyzed the transfer of glucose from UDP-glucose into lipid-, water-, and alkali-soluble materials, as well as into an alkali-insoluble cellulosic beta-1,4-glucan. The results strongly support the sequence glucose leads to glucose 6-phosphate leads to glucose 1-phosphate leads to UDP-glucose leads to cellulose and indicate that lipid- and protein-linked cellodextrins may function as intermediates between UDP-glucose and cellulose in A. xylinum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The synthesis of cellulose in cell-free extracts of Acetobacter xylinum.

In a previous publication (2) evidence was presented that the synthesis of chitin in Neurospora crassa occurs by way of a glycosyl transfer from uridine diphosphate-N-acetylglucosamine. The similarity of the structure of chitin and cellulose suggested that a like mechanism may be operative in the biosynthesis of cellulose. It has been shown by Hestrin and Schramm (3) that non-viable lyophilized...

متن کامل

Molecular basis of cellulose biosynthesis disappearance in submerged culture of Acetobacter xylinum.

Acetobacter xylinum strains are known as very efficient producers of bacterial cellulose which, due to its unique properties, has great application potential. One of the most important problems faced during cellulose synthesis by these bacteria is generation of cellulose non-producing cells, which can appear under submerged culture conditions. The reasons of this remain unknown. These studies h...

متن کامل

Identification of a second cellulose synthase gene (acsAII) in Acetobacter xylinum.

A second cellulose synthase gene (acsAII) coding for a 175-kDa polypeptide that is similar in size and sequence to the acsAB gene product has been identified in Acetobacter xylinum AY201. Evidence for the presence of this gene was obtained during analysis of A. xylinum mutants in which the acsAB gene was disrupted (I.M. Saxena, K. Kudlicka, K. Okuda, and R.M. Brown, Jr., J. Bacteriol. 176:5735-...

متن کامل

Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum.

Higher plants efficiently conserve energy ATP in cellulose biosynthesis by expression of sucrose synthase, in which the high free energy between glucose and fructose in sucrose can be conserved and used for the synthesis of UDP-glucose. A mixture of sucrose synthase and bacterial cellulose synthase proceeded to form UDP-glucose from sucrose plus UDP and to synthesize 1,4-beta-glucan from the su...

متن کامل

SYNTHESIS OF BACTERIAL CELLULOSE BY Acetobacter xylinum sp. USING WATERMELON RIND WASTE FOR BIOCOMPOSITE APPLICATION FADILAH MOHAMED UNIVERSITI MALAYSIA PAHANG v SYNTHESIS OF BACTERIAL CELLULOSE BY Acetobacter xylinum sp. USING WATERMELON RIND WASTE FOR BIOCOMPOSITE APPLICATION FADILAH MOHAMED

Cellulose was the most abundant polymer or polysaccharide that presents as the structural component of the primary cell wall of green plants but also signify for microbial extracellular polymer. The production of cellulose by microorganism such as Acetobacter xylinum sp. was most favored by researchers because the cellulose that produced was extremely pure and had a higher degree of polymerizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 143 3  شماره 

صفحات  -

تاریخ انتشار 1980